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How good are global Newton methods. Part 1

A. A. Goldstein*

ABSTRACT: 1) Relying on a theorem of Nemerovsky and Yuden(1979) a lower bound

is given for the efficiency of global Newton methods over the class C1(pt, A) defined below.

2) The efficiency of Smale's global Newton method in a simple setting with a non-singular,
Lipschitz-continuous Jacobian is considered. The efficiency is characterized by 2 param-
eters, the condition number Q and the smoothness S, defined below. The efficiency is

sensitive to S, and insensitive to Q.

KEYWORDS: Globa Newton methods, unconstrained optimization, computational com-
plexity

Global Newton methods are considered by some to be methods for minimizing a "strongly"

convex function f defined on a real Hilbert space E. Strongly convex means that f is twice

differentiable with a Hessian that is bounded from above and below. By C(jI, A) we denote
the set of all strongly convex functions whose Hessian is bounded below by U and above

by A. The Hessian is invertible so that Newton's method is well defined for every point in

E. Moreover a strong convex function achieves a minimum, where Vf(z) = 0. However
Newton's method may not converge to a root of VfJ(x) = 0 from arbitrary points in E. ,

This is a raison d'itre for the Global Newton methods. These methods, whose ingredients

contain Newton steps, generate sequences that converge for every strongly convex functions

and any starting point in E. The convergence rate is asymptotically superlinear. An
early history of this subject may be found in Po!ak(1973), who cites contributions of

Goldstein(1965), Pshenichnyi(1970), and Robinson(1972). More recent work is due to
Bertsekas(1982), Dunn(1980), Hughes and Dunn(1984), and others. All of these results
give estimated asymptotic rates of convergence. Global Newton methods for finding roots

go back to at least 1934. They are related to continuation methods. An early history
and discussion may be found in Ortega and Rheinboldt(1970,p235), who credit the basic

idea to Lahaye(1934,1948). Current references may be found in Smale(1986-2). In general

we regard a global Newton method as any algorithm incorporating Newton steps that
that generates a finite sequence terminating in an approximate root. This is a point from

which the ordinary Newton's method will converge. Other algorithms are available that
terminate in an approximate root. The efficicncy or iteration count of 2 such algorithms
will be compared to a global Newton method. The word "algorithm" as used in this paper

should be taken with "a grain of salt". We assume information that is not given with real
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problems. Our excuse for doing this is that we hope thereby to gain insight and motivation

for the future construction of good algorithms.

The efficiency of a Global Newton method was probably first analyzed by Kung(1976).

using natural assumptions that imply a non-vanishing Jacobiaii. It appears that the next

such result is due to Smale(19S6-2) who established a global Newton method in the general

setting of an analytic mapping between Banach spaces, both real or both complex. We

revisit this problem below. Our assumptions are close to Kung's but our algorithm follows

Smale. The first part of this paper wi show that the class of strongly convex functions

and thus any more generalized classes i.at include the strongly convex functions are not a

suitable setting for Newton's method: hence, also not suitable for global Newton methods.

Unfortunately, this is the setting for the asymptotic convergence proofs mentioned above.

Consider the class C 1 (P. A) having the following definition. Let F be a continuously dif-

ferentiable map from a separable real Hilbert space H into itself. The inner product in H

will be dpncted by [ ]. Let D(x) denote the Frechet derivative of F at x. By C'(11. A)

we denote the set of all maps F for which pllllh < JID(x)hll < A llII for all It. x E H.
with p > 0 . Let Q = . Assume that the linear operator D(x) has an inverse. We

shall show that no global Newton method (or any other algorithm) can do better than

linear convergence at a certain determined rate over every member of the above class. Any

algorithm that can achieve this rate is called an optimal algorithm. For the special case

of C()p. A) a simple algorithm due to Nesterov (1983)is optimal to within a multiplicative

constant. The convergcnce rate is linear. Nesterov's algorithm does not require inversions:

-it is similar to the gradient method. Any application of Newton's method rcquircs the

computation of an inverse operator or the solving a system of linear equations. If tl(,

dimension of H is small we usually are willing to pay the price of solving equations to, gaill

the possibility of quadratic convergence. The convergence estimates for the global Newtoin

method in the space C'(p. A. L) that is a subset of Cl(p. A) with D(x) satisfying a uniforrm

Lipschitz constant L show arbitrarily slow convergence for sufficiently large values of L.

For the special case when D(x) is everywherc self-adjoint we exhibit a gradient algorithm -

whose efficiency is insensitive to L . For this case the estimate for the gradient method i :Z T

superior to that of the global Newton method when L is sufficiently large. However the

gradient method is sensitive to Q. while the global Newton method is not. Thus for fix (I .

L and large enough values of Q the situation is reversed.

It is a pleasure to thank Brad Bell for discussions and helpful criticisms.
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REMARK 1. a). If F is E C'(p,A) then any stationary point of IIF(x)12 is a root of F.

PROOF Let f(x) [F(x),F(x)]. The differential f'(x,h) = 2[F(x).D(x)h], where D(x)h

= F'(x,h). Let h = D-'(x)F(x). If x is stationary then f'(x,h) = 0 = 2[F(x), F(x)].

Whence F(x) = 0.

b).EXISTENCE. In view of 1. above, if in addition f has compact level sets then F has

roots.

Let C(p, A) denote the set of twice differentiable c. ex functions with

pilh 12 < f"(x,h,h) Alh l2

for all x and h E H, and some positive p< A. The class C(p, A) is called a set of -strongly

convex" functions. The number Q = A/p is called the condition numbcr.

ALGORITHMS By an algorithm A(g) where g E C(1i, A) we mean a recurrence relation

that calculates Xk+l using some of the values of g, g' and g" at x, s=0.1,2 ..... k, with x)

arbitrarily given. A(g) is a special case of a "local method"defined by Nemerovsky and

Yuden. 1981. By an algorithm B(F) defined on C'(P, A), we mean a recurrence relation

that calculates X.+I using some of th values of F and F' at .r.. 0 < s < k. with Xr

arbitrarily given. B(F) is also an instance of a local method. We shall assume that all

global Newton methods are B(F) algorithms.

Let C,(11. A) denote a subset of C' (p. A) for which D(x) is self-adjoint with spet ral hoiunds

ji and A for all x E H. For F E C,(p. A) we can associate a "potential- function f (\Vaililrg

1955) such that Vf(.z') = F(x) for all x in H. (Actually. an equivalence class of functions.

differing from each other by a constant). Also for every f E C(/u. A) there correspoiols ;

F E C,( p. A). The function f is weakly lower seni-continuous ai,(t tho level sets of f aye
weakly sequentially compact. This, and the strong convexity of f implies that there exists

a unique minimizer for f, say z.

When any formula below is followed by the word "steps" we mean that the formula is to,

be rounded up to the nearest integer. We rely on the following claim.

THEOREM 1.)NEMEROVSIKY-YUDEN(1979) Given a positive E < 1, a fixed but arl,-

trary point x 0 E H and an algorithm A(f), there exists a function f E C(p. A) such that

if Xk generated by A(f) reduces (f(k) -f(z)) to less than (.f(Xo- .f( ) tlheI k c('Xcc(ls

the number:

C [min(n. Q)/(n1 in~(n, AQ)) ] In - InI -
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Here c is a positive constant, Q is > 2, and z = argmin f.

REMARK 2. For n and Q sufficiently large and e sufficiently small the above bound may

be increased to:

Given a positive c < 1 and any function f E C(p, A) there is an algorithm A that yields

f(Xk) - f(Z) < (f(xo) - f(z))E whenever k exceeds 4v'Q ln2) - 1 lnE -  = R' ln c'. This
algorithm is due to Nesterov(1983). It is essentially optir k;d, and can only be improved by

a decrease in the constant factor 4/ In 2. Stated otherwise, the algorithm A applied to any

function f E C(p, A) generates a sequence Xk that satisfies (f(Xk)- f(z))/(f(Xo)- f(z)) <_
((E-(1/R'))k. for 1 < k < oc.

The algorithm A (that will be called GRAD below) may also be taken to be the gradient

method with step length 1/A . This algorithm requires no information about the values

of the function f, while Nesterov's does. Observe that the linearly converging sequenc-

(f-(/R))', k = 1,2.3, ... is for each k a lower bound for the relative decrease of some
function f in C(ti. A) at xk . while the sequence (c-(1/R'))k is an upper bound for the

relative decrease for any function in C(p. A). For the gradient method above the sequence

is ((-(/Q)) k.

This prompts us to call the class C(p. A) "esslinearly convergent". that is every function in

the class can be made to converge no slower than linearly, but sup {(f(.rk)-f(z))/(f(x1 )-

f(z)) : f E C(1i. A)}. k=1.2.3 ..... cannot converge faster than linearly. For brevity we shall

refer to this latter property as "sublinearly convergent". We now observe that the clas,

C,(pi. A) is also esslinearly convergent.

LEMMA 1 Given F C C,(1i. A). let f denote any potential function for F. Let z = argumin

f. The following inequalities obtain:

(2Q)-'[(f(x) - f(z))/(f(xo) - f(z))]'' 2 < I1F(x) l/1F(xo)f1

< 2Q[(f(x) - f(z))/(f(xo) - f(z))]1 / 2  (4)

Moreover, if

f(x) - f(z) <: 2(f(.ro)- f(z))/4Q3 tMr,- HIF(.r)I< c fIlF(x( ,) (B)

5



PROOF By the strong convexity of f and Taylor's theorem we get:

p IIx - z2 < f(x) - f(z) < iHx- zl2 (a)

By the generalized mean value theorem and the convexity of f we get:

IJF(x)l < Allx - zII (b)

and
f(x) - (z) IIF(x)I J~x - zil (c)

By (a) and (b) we have:

IF(x)JI < A[2(f(x) - f(z)) 1/2

IF(xo)I [ IF(xo) (d)

By (a) and (c) we get

IIF(x)l > Jjx - z-l (c)

and

IF(x)[[ > (f(x) - f(Z))I/ 2  (.f)

To prove (B) we find that using the hypotheses of (B) together with (d) that

HiF(x)H < A [2E2(f(X.o) - f(z))]1/2
iIF(xo)fl I 4pQIIF(x0)H2

Using (e) we find that the right hand side is less than or equal to

A[ 2E2 (.f(Xo)- f( )) 1/2

4pQ p2jX - Z112/4J

Now using (a) the above expression is less than or equal to C.

We now turn to the proof of (A). Using (f) and (d) we find that

2 JIF(x)ll (f(X) - f(z))'/ ( f(X) - f(Z) )1/2 V-

V IF(xo)ll > IIF(xo)ll - f(o) - f(z)/ V vA

This proves the left side of (A). The right hand inequality is proved siniilarly. usii1, (I)

and (f).

LEMMA 2 The class C,( p. A) is esslinear.



PROOF Let f be a potential function corresponding to F. Every algorithm B(F) is now

also an algorithm A(f). Every function F E C,(p, A) is the gradient of some f E C(ji. A).
Hence for some F, IF(xk)ll / IIF(xo)!l converges more slowly than ( 6 -(1/R))k/2/ 2 Q. Now

take for the algorithm B the gradient algorithm mentioned above. Again by LEMMA 1

every function F will converge under B with at least a linear rate.

Since C(pi..A) is a subset of C1 (y,A), then for some F E C'(y,A), IIF(Xk)HI/IIF(x0)l
converges more slowly than (c - (1/R))k/2/2Q. Now for B(F) we take the algorithm GRAD2

below. This algorithm converges linearly. Whence we have

THEOREM 2. The class C'(1 i, .X) is sublinearly convergent.

We now restrict the class C'(p, A) to enlarge the possibility of faster convergence. Let

C'(p.A,L) denote a map FE C 1(p, A) for which [ID(x) - D(y)[I < L lix - y[l. for all x.y E
H. The following well- known theorem is adjusted for our present setting.

THEOREM 3 KANTOROVICH(1948) Take xo G H.. Let 3(.o) = II(D-'(x.))lI awl

71(xo) = I(D-1 (xo))F(xo)II. Assume that JID(x) - D(y)Jl _< A(xo)IIx - yiI for all pairs x.y

in the ball B(x0 ) = {x E H : lx - xolJ < 2q(x0)}. If 7(x0) 3(x0)A(j-0) = h(x 0 ) .< 1/2.

then F has a root z such that z is in the ball B(xo), the Newtonian iterates x. defined by

"1+1 = 3 - D-'(x F(x)) lie in B(zo), and Jlxj -zli _ 21 (2h(xo ))2' -1,?(Xo).

A convenient terminology similar to Smale's is that under the above circumstances .r0 is

an "approximate root"

In what follows we shall take h(xo) = 1/4.

REMARK 3. The condition for an approximate root.?o) (.r0),(. )) < 1/4 18s tliW

equivalent condition for an approximate root as:

f(F(xo)! < o(x,0) = 1/[43(xo),A(xo)IID-(xo)F(xo)/IIF(x-o)l Ii]

REMARK 4. We have for all x E H global estimates for il(r). 3(0), and .(x Naiie'ly:

3(x) :_ 1/. 71(x) !_ IF(x)J /t' and A(x) < L. From these estimates we get:

a(x) > 1 i2 /4L = o

If l.F(x)! < a then x i.- an approximat( root. (,d

71(xr) <_ p/4L.



In many problems a is so small that the desired accuracy tolerance is achieved before an

approximate root is achieved. Thus the efficiency of a globai Newton method in reaching

an approximate root is a crucial question. We now turn to our version of Smale's algorithm

which we shall denote by "SGN". In what follows a(xi) will be denoted by Gi.

REMARK 5. In what follows the constants p. A, and L need not be finite over the entir

space H, but rather on the set S = {x E H: IIF(x)II _ IIF(xo)I}.

LEMMA 3. A ime F E C'(p, A) and x 0 is arbitrarily given in H. If IF(x )!I < oo thcn

r0 is an apprc nate root. If not we define a sequence xo, t]. X1. t 2 ...... inductively as

follows. Given x, set
l IF(x,)I - a (a)

IIF(x,)jj

Choose x,+ to satisfy

IIF(a',+a) - t,+ 1F(x,) I < a,/2 (1)

Then

LF(x:+l )11 <  IIF(x0)Il - (i + 1 )/'2

where o is defined as in Remark 4.

PROOF. We show first that x,+, can be chosen to satisfy (b). Let G,(.) Fr) -

t,+F(xi). Since G,(.r,) = a. ri is an approximate root for G,. because F' =G'. A k'v

Newton steps (we count them below) suffices to obtain x",+1 such that IG,( .r,- )1 < o, /2 .

Thus (b) can be satisfied. Using the triangle inequality on (a) together witlh (1,) w,,

get that IF(xi+,)l < IIF(x,)Ii- a,/2. Whence IIF(x,+I)ll < IF. - ,=, 0.

F(xo) - (i + 1)o/2. Now choose i so that IF(x,+j )11 :5 n

CLAIM 1 Let N be the least integer exceeding 2( IIF(.ro )I -o )/n. Then for some < _\A.x,

is an approximate root of F.

We now estimate the number of Newton steps to move from x, to x.r,1.

LEMMA 4 Let {yi,} be a sequence of Newtonian iterates starting at Y0 = .r,. Let G,(z,

0. Then we can choose x,+i = y,, where K is the least integer > 1.443 In (1.443 In SQ,.

PROOF We have seen that x, is an approximate zero for G, hence I!1,j - z,11 < 

Then

1~~~ 22 tatiow -hoose otha GjH- A(7(y2 , - zII <_ ApL 1 ( 2)

Now choose K so that A/jL'( 2 A < a/2, that is (2K /S)



REMARK 6. The above algorithm can be optimized by changing the right hand side oi

inequality (b) in the recursion above to a/q with q > 1. The formula for N becones

(HjF(xo) - a )q/a) and 1K becomes 1.433 in (1.433 in 4qQ). Now choose q to minimize NE'.

LEMMA 5 Tak- F E C'( 1 ,A,L) Assume that D(x) is self-adjoint for all x E H. The

gradient method previously mentioned below REMARK 2, called Algorithm A. that we

shall now call "GRAD1" will. starting at x0, generate an approximate root in K steps.

where K is the smallest integer > Q lr [IIF(xo )}j4QL/p2]

PROOF The mapping G defined by G(y) = - P(y)/A has a fixed point z satisfying F(z)

0. It is a contractor satisfying a Lipschitz condition q = 1 - 1/Q. Gold toin(1967. pp.s

15 and 24). Set G(.r,,) = i,1, - F(x,,)/A. Then IIF(r,,) - F(z7)11 < Alix,, - :11 <

,q" 117 - x, H /(1 - q)= HF(xo )JIq"/(1 -q). Now choose n so that

r(xo )jjq" < (1 - q)

Using the inequality -hI t 1 - p/A) > 1 /A. one obtains the lemma.

We now consider a gradient method for the non-symnimetric case. \We call this gra(lient

method GRAD2.

ALGORITHM GIRAD2 Take F C C"'it. A.L). .0 C S and set f(x' = JHF(x);". Then Vf7.v)

satisfies H Y f.)- Vf(y )I K Al Hr - yll for all x and v in S. with I1 = 2(.\-' i L
Set o)f(.Vf(r)/ I ) . Given arbitrary r in H sct

-, = /2.1. If k exceeds

2(I~n Q' (2)In( flF~x,! 4L)

t hei rk is all ai)t)r()Xitl1t(' r(ot.

PROOF Adding and suitractin E ( F'(t) )r(a) w, find that jVf(a) - V.f(:¢)Il < 2k \2 +

1!F(x)Hj L) Hx - y,. and f(.r)- f(. - ",o(ar)) [Vf(x).o(.r)] + Cf(r) fKc. xr'.

Here J! - xjj < ; 0( .r )V. Then f(- o(r) < f(.r) - ;f(x) +,.Io(.
2(F'(x))*F(x), and ]1Vf( al' > 2jjF(.r)lpj. Then f(.r 1 ) < f( a.)[1 - ;, + %o1/4/,'j

f(Xk )( 1 - J2/.l). Taking sqilame roots we get that IF(.k+, )1 < IF( 'k )ll( 1 - / 2/2.11).
Finally, choose k so that F(.T0 )ll(1 - ,,2/_3 _)k< 11

2 14L

Comparing the algorithms. Let

By claim 1 and lemma 4 t}ic h t al ii inbler of st eps ()f SG.N is:

9 
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SGN : 11.544(S-.25)ln(1.44C J]r. Q).

GRAD2 : 2(S+Q 2 )ln4S

GRAD1 : Qln(4SQ)

Notice that unlike GRADI and GRAD2, SGN is insensitive to the condition number 0!
However SGN is sensitive to S. GRAD 1 is sensitive to Q but not to S. GRAD2 is sensitive

to both of these factors. In the symmetric case for fixed Q, GRAD is quicker than SGN

whein JIF(xo)ll grows sufficiently large or if L/P 2 gets sufficiently large. On the otl(1r

hand for fixed S, SGN is quicker as Q grows sufficiently large. In the non-symmetric case

SGN is superior to GRAD2 with respect to the number of steps. When the cost per

step is included, the gradient methods become cheaper in the n-dimensional case when ii
is sufficiently large. For each Newton step an nxn system of linear equations Is solhed.
costing 0(n') multiplications. While the corresponding GRAD2 step involves a matrix

multiplicatio;i of an nxn and a nxl matrix, or n' i lultiplications. and GRADI requires no
matrix operations.
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